Histone demethylase JMJD3 regulates CD11a expression through changes in histone H3K27 tri-methylation levels in CD4+ T cells of patients with systemic lupus erythematosus
نویسندگان
چکیده
Aberrant CD11a overexpression in CD4+ T cells induces T cell auto-reactivity, which is an important factor for systemic lupus erythematosus (SLE) pathogenesis. Although many studies have focused on CD11a epigenetic regulation, little is known about histone methylation. JMJD3, as a histone demethylase, is capable of specifically removing the trimethyl group from the H3K27 lysine residue, triggering target gene activation. Here, we examined the expression and function of JMJD3 in CD4+ T cells from SLE patients. Significantly decreased H3K27me3 levels and increased JMJD3 binding were detected within the ITGAL (CD11a) promoter locus in SLE CD4+ T cells compared with those in healthy CD4+ T cells. Moreover, overexpressing JMJD3 through the transfection of pcDNA3.1-JMJD3 into healthy donor CD4+ T cells increased JMJD3 enrichment and decreased H3K27me3 enrichment within the ITGAL (CD11a) promoter and up-regulated CD11a expression, leading to T and B cell hyperactivity. Inhibition of JMJD3 via JMJD3-siRNA in SLE CD4+ T cells showed the opposite effects. These results demonstrated that histone demethylase JMJD3 regulates CD11a expression in lupus T cells by affecting the H3K27me3 levels in the ITGAL (CD11a) promoter region, and JMJD3 might thereby serve as a potential therapeutic target for SLE.
منابع مشابه
Effects of Major Epigenetic Factors on Systemic Lupus Erythematosus
The pathogenesis of systemic lupus erythematosus (SLE) is influenced by both genetic factors and epigenetic modifications; the latter is a result of exposure to various environmental factors. Epigenetic modifications affect gene expression and alter cellular functions without modifying the genomic sequences. CpG-DNA methylation, histone modifications, and miRNAs are the main epigenetic factors ...
متن کاملRFX1 regulates CD70 and CD11a expression in lupus T cells by recruiting the histone methyltransferase SUV39H1
INTRODUCTION Regulatory factor X-box 1 (RFX1) can interact with DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1), and RFX1 down-regulation contributes to DNA hypomethylation and histone H3 hyperacetylation at the cluster of differentiation (CD) 11a and CD70 promoters in CD4(+) T cells of patients with systemic lupus erythematosus (SLE). This leads to CD11a and CD70 overexpressi...
متن کاملCritical role of histone demethylase Jmjd3 in the regulation of CD4+ T cell differentiation
Epigenetic factors have been implicated in the regulation of CD4(+) T-cell differentiation. Jmjd3 plays a role in many biological processes, but its in vivo function in T-cell differentiation remains unknown. Here we report that Jmjd3 ablation promotes CD4(+) T-cell differentiation into Th2 and Th17 cells in the small intestine and colon, and inhibits T-cell differentiation into Th1 cells under...
متن کاملIdentification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases.
Covalent modifications of histones, such as acetylation and methylation, play important roles in the regulation of gene expression. Histone lysine methylation has been implicated in both gene activation and repression, depending on the specific lysine (K) residue that becomes methylated and the state of methylation (mono-, di-, or trimethylation). Methylation on K4, K9, and K36 of histone H3 ha...
متن کاملThe histone H3 lysine-27 demethylase Jmjd3 plays a critical role in specific regulation of Th17 cell differentiation.
Interleukin (IL) 17-producing T helper (Th17) cells play critical roles in the clearance of extracellular bacteria and fungi as well as the pathogenesis of various autoimmune diseases, such as multiple sclerosis, psoriasis, and ulcerative colitis. Although a global transcriptional regulatory network of Th17 cell differentiation has been mapped recently, the participation of epigenetic modificat...
متن کامل